

¹³C NMR Signal Detection of Iron-Bound Cyanide Ions in Ferric Cyanide Complexes of Heme Proteins

Hiroshi Fujii*

Institute for Molecular Science and Center for Integrative Bioscience, Okazaki National Research Institutes, Myodaiji, Okazaki 444-8585, Japan

Received January 28, 2002

Small-molecule axial ligands potentially can serve as useful NMR probes for characterization of the environment and electronic structure of a prosthetic group in heme proteins.¹ In this regard, the diamagnetic ferrous states have been examined thoroughly because of easy signal detection from iron-bound small molecule.² The ¹³C NMR signal of ¹³CO form of heme protein proves to be sensitive to the nature of the trans amino acid ligand. For the paramagnetic ferric state, cyanide ion would appear to have the greatest potential because of its extremely high affinity to ferric heme iron center.1 15N NMR signals of the iron-bound C15N have been detected in a far-downfield region for both iron(III) porphyrin model complexes and heme proteins.^{3,4} However, the ¹⁵N NMR spectroscopy remains ambiguous as a NMR probe since the ¹⁵N NMR shift reflects the nature of both the hydrogen bond in the distal side and amino acid ligand in the proximal side. On the other hand, ¹³C NMR spectroscopy of the iron-bound ¹³CN has been investigated in less detail.5,6 Although 13C NMR signals of the ironbound ¹³CN are detectable in a far-upfield region (\sim -2500 ppm from TMS) for bis-cyanide iron(III) porphyrin model complexes, extreme line-broadening of the signal seemed to preclude the signal detection in heme proteins, and a resonance of the iron-bound ¹³CN for ferric heme protein has not yet been located. During a more extensive ¹³C NMR study, we found the ¹³C NMR signals of the iron-bound ¹³CN of ferric cyanide complexes of heme proteins and its model complexes at an unexpectedly large upfield region $(\sim -4000 \text{ ppm from TMS})$. Here, we report the first detection of the ¹³C NMR signal of the iron-bound ¹³CN in heme proteins such as sperum whale myoglobin (Mb), human hemoglobin (Hb), horse heart cytochrome c (Cyt-c), and horseradish peroxidase (HRP). This study shows that the ¹³C NMR spectroscopy of the iron-bound ¹³CN provides a probe for studying the nature of the proximal ligand in ferric heme protein.

Figure 1 shows ¹³C NMR spectra of bis-cyanide and cyanide– imidazole complexes of iron(III) protoporphyrinIX dimethyl ester (PPDME) in CD₂Cl₂ at 297 K. As in the previous report,⁵ the ¹³C NMR signal of the iron-bound ¹³CN for the bis-cyanide complex is observed far upfield at -2516 ppm from TMS (Figure 1a). Alternatively, the ¹³C NMR signal of the iron-bound ¹³CN for the cyanide–imidazole complex, which is a model for cyanide complexes of heme proteins with a histidine proximal ligand, is not observed in this region.⁷ Surprisingly, the ¹³C NMR signal of the iron-bound ¹³CN of the cyanide–imidazole complex of iron(III) PPDME is observed in much more upfield region at -3926 ppm from TMS (Figure 1b). The ¹³C NMR signal of the iron-bound ¹³CN shifts upfield extremely with changing the proximal trans ligand from cyanide to imidazole. The ¹³C NMR signal for the cyanide–imidazole complex ($\Delta v_{1/2} = \sim 3000$ Hz) is much broader

Figure 1. ¹³C NMR spectra of iron-bound ¹³CN of iron(III) protoporphyrinIX dimethyl ester in CD₂Cl₂ at 296 K. (a) Bis-cyanide complex. (b) Cyanide—imidazole complex.

than that for the bis-cyanide complex ($\Delta v_{1/2} = -500$ Hz). Convincing evidence for assignment of the signal to the iron-bound ¹³CN is found in the temperature dependence. The Curie plot for the ¹³C NMR signal is linear, but with a nonzero intercept, over the temperature range from 233 to 303 K. In contrast to the previous ¹⁵N NMR spectroscopy, the ¹³C NMR signal for the cyanideimidazole complex does not show a significant solvent-dependent NMR shift, indicating that the hydrogen bond to the iron-bound ¹³CN does not affect the ¹³C NMR shift.^{3,8} Since the dipolar shifts estimated from EPR g values for the bis-cyanide and the cyanideimidazole complexes are \sim +400 ppm, the extremely large upfield shifts of the ¹³C NMR signals would be due to Fermi contact shift resulting from a negative σ -orbital spin polarized at the ¹³C atom by the iron $d_{xz}(d_{yz})$ orbital spin.^{1,9} The estimated Fermi contact shift $(\sim -4100 \text{ ppm})$ for the cyanide-imidazole complex is larger than that (\sim -2700 ppm) for the bis-cyanide complex. Changing of the proximal trans ligand from anionic cyanide to neutral imidazole would strengthen the binding of 13CN ion to the iron as a result of the trans effect and enhance the spin polarization to the iron-bound ¹³CN. This idea is further confirmed by the ¹³C NMR spectrum of the cyanide-imidazolate complex of iron(III) PPDME.^{10,11} The ¹³C NMR spectrum of the cyanide-imidazolate complex shows the 13C NMR signal of the iron-bound ¹³CN at -3507 ppm from TMS. The ¹³C NMR paramagnetic shift is drastically decreased with changing the axial ligand from neutral imidazole to anionic imidazolate. All of these results indicate that the ¹³C NMR shift of the iron-bound ¹³CN is a sensitive probe for the nature of the proximal trans ligand.

We further examined the ¹³C NMR signal of iron-bound ¹³CN of ferric cyanide complexes of heme proteins and succeeded in the first detection of ¹³C NMR signals for heme proteins. Figure 2 shows ¹³C NMR spectra of ferric cyanide complexes of Mb, Hb,

^{*} To whom correspondence should be addressed. E-mail: hiro@ims.ac.jp.

Figure 2. ¹³C NMR spectra of iron-bound ¹³CN of cyanide complexes of ferric heme proteins at 296 K. (a) Sperum whale myoglobin in 0.1 M phosphate buffer, pH = 7.0. (b) Human hemoglobin in 0.1 M Tris-HCl buffer, pH = 7.0. (c) Horse heart cytochrome c in 0.1 M phosphate buffer, pH = 7.0. (d) Horseradish peroxidase in 0.1 M phosphate buffer, pH =7.0.

Cyt-c, and HRP at 297 K. The 13C NMR signal of the iron-bound ¹³CN is observed at -4145, -4074, -3761, and -3543 ppm from TMS for Mb, Hb, Cyt-c, and HRP, respectively.^{12,13} The paramagnetic upfield shifts of the 13C NMR signals for these heme proteins are similar to those for the cyanide-imidazole model complex, but the line widths ($\Delta v_{1/2} = \sim 8000$ Hz) of the ¹³C NMR signals for heme proteins are much broader than those for the cyanideimidazole model complex. In the pH range examined here between 7 and 9, we did not observe substantial ¹³C NMR shift of the ironbound ¹³CN for these heme proteins.

Interestingly, the ¹³C NMR signal of the iron-bound ¹³CN changes the resonance position in the range of 600 ppm although all of these heme proteins have a histidine-imidazole as a proximal ligand. As shown above, the ¹³C NMR shift of the iron-bound ¹³CN is sensitive to the nature of the proximal ligand, but not to the hydrogen bond in the distal side. Therefore, the present ¹³C NMR shifts for these heme proteins would reflect the nature of the proximal histidine-imidazole. Although we compared the X-ray crystal structures for these heme proteins, we could not observe a good correlation between the ¹³C NMR shift and the binding nature of the histidine-imidazole, such as the bond length of Fe-N(His) and the bend and tilt angles of the histidine-imidazole.14-17 However, we found a good correlation with the nature of the hydrogen bond of the proximal hisitidine-imidazole. The NH proton of the proximal histidine-imidazole interacts with the hydroxyl group of serine in Mb, the carbonyl oxygen of main chain in Hb and Cyt-c, and the carboxyl group of aspartate in HRP (see Scheme 1).^{14–17} This means that the imidazolate character of the proximal histidine increases in the order of Mb, Hb, Cyt-c, and HRP,¹⁸ which conforms to the order of the ¹³C NMR paramagnetic shifts. In fact, the proximal histidine in HRP has been thought to

have strong imidazolate character, and the 13C NMR shift for HRP is close to that for the cyanide-imidazolate model complex.¹⁷ All of present results indicate that the ¹³C NMR signal of the ironbound ¹³CN is a useful probe to study the nature of the proximal ligand, such as the imidazolate character, in ferric heme proteins.

In conclusion, we first show 13C NMR signals for heme proteins and their model complexes in an extremely large upfield region. This study demonstrates that the ¹³C NMR signal of the iron-bound ¹³CN is a sensitive probe to study the nature of the proximal ligand in ferric heme protein, in much the same way that CO serves as a powerful probe for ferrous heme proteins. A detailed study including further application of the ¹³C NMR spectroscopy to other heme proteins is under investigation in our group.

Acknowledgment. This work was supported by Grants in Aid from the Ministry of Education, Science, Sport, and Culture, Japan.

References

- (1) (a) Goff, H. M. In Iron Porphyrins; Lever, A. B. P., Gray, H. B., Eds.; (a) Golt, H. M. In *Holn Torphythis*, Level, A. B. F., Oldy, H. B., Eds., Addison-Wesley: Reading, MA, 1983; Part 1, pp 237-281. (b) La Mar, G. N.; Walker, F. A. In *The Porphyrins*; Dolphin, D. Ed.; Academic Press: New York, 1978; Vol. IV, pp 61-157.
 (a) Moon, R. B.; Richards, J. H. *J. Am. Chem. Soc.* **1972**, *94*, 5093-5095. (b) Moon, R. B.; Richards, J. H. *Biochemistry* **1974**, *13*, 3437-2440.
- (2)3443
- (3) Morishima, I.; Inubushi, T. J. Am. Chem. Soc. 1978, 100, 3568-3574.
 (4) (a) Behere, D. V.; Gonzalez-Vergara, E.; Goff, H. M. Biochim. Biophys. Acta 1985, 832, 319-325. (b) Behere, D. V.; Ales, D. C.; Goff, H. M. Biochim. Biophys. Acta 1986, 871, 285-292.
- (5) Goff, H. M. J. Am. Chem. Soc. 1977, 99, 7723-7725.
- (6) Nakamura, M.; Ikeue, T.; Fujii, H.; Yoshimura, Y. J. Am. Chem. Soc. 1997, 119, 6284-6291
- (7) The ¹³C-labeled cyanide-imidazole complex of iron(III) PPDME was prepared by addition of 1 equiv of ¹³C-labeled tetrabutylammonium cyanide to the bis-imidazole complex of iron(III) PPDME in CD₂Cl₂.
- (8) While ¹⁵N NMR isotropic shift of the iron-bound C¹⁵N for the cyanide imidazole complex was decreased $\sim 10\%$ with addition of water into DMSO- d_6 solvent, the ¹³C NMR isotropic shift was decreased only ~0.2%.
- (9) The following parameters were used for calculations of the dipolar shifts, g₁ ≈ 1.0, g₂ ≈ 2.3, g₃ ≈ 3.6, r ≈ 1.98 Å for the bis-cyanide complex and g₁ ≈ 0.74, g₂ ≈ 1.89, g₃ ≈ 3.4, r ≈ 1.98 Å for the cyanide−imidazole complex (ref 1b).
- (10) The cyanide-imidazolate complex was prepared by addition of sodium methoxide to the cyanide-imidazole complex in CD2Cl2 and confirmed its formation by ¹H NMR spectrum (ref 11). (11) Chacko, V. P.; La Mar, G. N. *J. Am. Chem. Soc.* **1982**, *104*, 7002–7007.
- As the case of the resonance Raman bands of the ν (Fe–CN), the ¹³C NMR signals for the α and β subunits of Hb could not be separated completely. These suggest that the Fe-CN bond character is not significantly different between the α and β subunits of the cyanide complex of Hb.
- (13) The isotropic shifts of the iron-bound ¹³CN were proportional to those of the iron-bound C¹⁵N for these heme proteins except HRP. The strong hydrogen bond of the iron-bound CN with amino acid residues in the distal side would change the ratio of ¹³C/¹⁵N NMR shifts for HRP.
- (14) Bolognesi, M.; Rosano, C.; Losso, R.; Borassi, A.; Rizzi, M.; Wittenberg, J. B.; Boffi, A.; Ascenzi, P. *Biophys. J.* **1999**, 77, 1093–1099.
- (15) Looker, D.; Abbott-Brown, D.; Cozart, P.; Durfee, S.; Hoffman, S.: Mathews, A. J.; Miller-Roehrich, J.; Shoemaker, S.; Trimble, S.; Fermi, G.; Komiyama, N. H.; Nagai, K.; Stetler, G. L. *Nature* **1992**, *356*, 258– 260.
- (16) Takano, T.; Dickerson, R. E. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 6371-6375
- Gajhede, M.; Schuller, D. J.; Henriksen, A.; Smith, A. T.; Poulos, T. L. Nat. Struct. Biol. **1997**, *4*, 1032–1038.
- (18) The distance between the imidazole nitrogen and carbonyl oxygen was 2.78 Å for Cyt-c and 2.97 Å (average) for Hb.

JA025737Y